AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (65)
  • Unit 2: Exponential and Logarithmic Functions (61)
  • Unit 3: Trigonometric and Polar Functions (63)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (61)
Unit 1: Polynomial and Rational Functions

Absolute Extrema and Local Extrema of a Polynomial

Consider the polynomial function $$p(x)= (x-3)^2*(x+3)$$.

Medium

Analysis of Removable Discontinuities in an Experiment

In a chemical reaction process, the rate of reaction is modeled by $$R(x)=\frac{x^2-4}{x-2}$$ for $$

Easy

Analyzing a Rational Function with a Hole

Consider the rational function $$R(x)= \frac{x^2-4}{x^2-x-6}$$.

Medium

Analyzing an Odd Polynomial Function

Consider the function $$p(x)= x^3 - 4*x$$. Investigate its properties by answering the following par

Easy

Analyzing Concavity and Points of Inflection for a Polynomial Function

Consider the function $$f(x)= x^3-3*x^2+2*x$$. Although points of inflection are typically determine

Medium

Analyzing Concavity in Polynomial Functions

A car’s displacement over time is modeled by the polynomial function $$f(x)= x^3 - 6*x^2 + 11*x - 6$

Medium

Analyzing End Behavior of a Polynomial

Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.

Easy

Average Rate of Change in a Quadratic Model

Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o

Easy

Binomial Theorem Expansion

Use the Binomial Theorem to expand the expression $$ (x + 2)^4 $$. Explain your steps in detail.

Easy

Break-even Analysis via Synthetic Division

A company’s cost model is represented by the polynomial function $$C(x) = x^3 - 6*x^2 + 11*x - 6$$,

Medium

Comparing Polynomial and Rational Function Models

Two models are proposed to describe a data set. Model A is a polynomial function given by $$f(x)= 2*

Medium

Composite Function Analysis with Rational and Polynomial Functions

Consider the functions $$f(x)= \frac{x+2}{x-1}$$ and $$g(x)= x^2 - 3*x + 4$$. Let the composite func

Hard

Constructing a Function Model from Experimental Data

An engineer collects data on the stress (in MPa) experienced by a material under various applied for

Medium

Constructing a Piecewise Function from Data

A company’s production cost function changes slopes at a production level of 100 units. The cost (in

Easy

Constructing a Rational Function from Graph Behavior

An unknown rational function has a graph with a vertical asymptote at $$x=3$$, a horizontal asymptot

Hard

Cubic Polynomial Analysis

Consider the cubic polynomial function $$f(x) = 2*x^3 - 3*x^2 - 12*x + 8$$. Analyze the function as

Medium

Data Analysis with Polynomial Interpolation

A scientist measures the decay of a radioactive substance at different times. The following table sh

Hard

Determining Function Behavior from a Data Table

A function $$f(x)$$ is represented by the table below: | x | f(x) | |-----|------| | -3 | 10 |

Easy

Discontinuity Analysis in a Rational Function with High Degree

Consider the function $$f(x)=\frac{x^3-8}{x^2-4}$$. Answer the following:

Hard

Engineering Application: Stress Analysis Model

In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled

Medium

Engineering Curve Analysis: Concavity and Inflection

An engineering experiment recorded the deformation of a material, modeled by a function whose behavi

Easy

Expansion Using the Binomial Theorem in Forecasting

In a business forecast, the expression $$(x + 5)^4$$ is used to model compound factors affecting rev

Easy

Exploring Asymptotic Behavior in a Sales Projection Model

A sales projection model is given by $$P(x)=\frac{4*x-2}{x-1}$$, where $$x$$ represents time in year

Hard

Exploring Polynomial Function Behavior

Consider the polynomial function $$f(x)= 2*(x-1)^2*(x+2)$$, which is used to model a physical trajec

Easy

Exponential Equations and Logarithm Applications in Decay Models

A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze

Easy

Geometric Series Model in Area Calculations

An architect designs a sequence of rectangles such that each rectangle's area is 0.8 times the area

Easy

Graphical Interpretation of Inverse Functions from a Data Table

A table below represents selected values of a polynomial function $$f(x)$$: | x | f(x) | |----|---

Easy

Interpreting Transformations of Functions

The parent function is $$f(x)= x^2$$. A transformed function is given by $$g(x)= -3*(x+2)^2+5$$. Ans

Easy

Inverse Analysis of a Quartic Polynomial Function

Consider the quartic function $$f(x)= (x-1)^4 + 2$$. Answer the following questions concerning its i

Hard

Inverse Analysis of an Even Function with Domain Restriction

Consider the function $$f(x)=x^2$$ defined on the restricted domain $$x \ge 0$$. Answer the followin

Easy

Inverse Function of a Rational Function with a Removable Discontinuity

Consider the function $$f(x)= \frac{x^2-4}{x-2}$$. Answer the following questions regarding its inve

Medium

Inverse of a Complex Rational Function

Consider the function $$f(x)=\frac{3*x+2}{2*x-1}$$. Answer the following questions regarding its inv

Medium

Investigating a Real-World Polynomial Model

A physicist models the vertical trajectory of a projectile by the quadratic function $$h(t)= -5*t^2+

Easy

Investigating End Behavior of a Polynomial Function

Consider the polynomial function $$f(x)= -4*x^4+ x^3+ 2*x^2-7*x+1$$.

Easy

Modeling Inverse Variation with Rational Functions

An experiment shows that the intensity of a light source varies inversely with the square of the dis

Medium

Modeling with Inverse Variation: A Rational Function

A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of

Easy

Multivariable Rational Function: Zeros and Discontinuities

A pollutant concentration is modeled by $$C(x)= \frac{(x-3)*(x+2)}{(x-3)*(x-4)}$$, where x represent

Easy

Office Space Cubic Function Optimization

An office building’s usable volume (in thousands of cubic feet) is modeled by the cubic function $$V

Hard

Piecewise Function and Domain Restrictions

A temperature function is defined as $$ T(x)=\begin{cases} \frac{x^2-25}{x-5} & x<5, \\ 3*x-10 & x\g

Medium

Piecewise Function Construction for Utility Rates

A utility company charges for electricity according to the following scheme: For usage $$u$$ (in kWh

Easy

Polynomial Division in Limit Evaluation

Consider the rational function $$R(x) = \frac{2*x^3 + 3*x^2 - x + 4}{x - 2}$$.

Hard

Polynomial End Behavior and Zeros Analysis

A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical

Medium

Polynomial Interpolation and Curve Fitting

A set of three points, $$(1, 3)$$, $$(2, 8)$$, and $$(4, 20)$$, is known to lie on a quadratic funct

Easy

Polynomial Long Division and Slant Asymptote

Consider the function $$P(x)= \frac{2*x^3 - 3*x^2 + x - 5}{x-2}$$. Answer the following parts.

Hard

Polynomial Long Division and Slant Asymptote

Consider the rational function $$F(x)= \frac{x^3 + 2*x^2 - 5*x + 1}{x - 2}$$. Answer the following p

Hard

Product Revenue Rational Model

A company’s product revenue (in thousands of dollars) is modeled by the rational function $$R(x)= \f

Medium

Projectile Motion Analysis

A projectile is launched so that its height (in meters) as a function of time (in seconds) is given

Medium

Rational Function Analysis for Signal Processing

A signal processing system is modeled by the rational function $$R(x)= \frac{2*x^2 - 3*x - 5}{x^2 -

Medium

Rational Function and Slant Asymptote Analysis

A study of speed and fuel efficiency is modeled by the function $$F(x)= \frac{3*x^2+2*x+1}{x-1}$$, w

Hard

Rational Function Asymptotes and Holes

A machine’s efficiency is modeled by the rational function $$R(x)= \frac{x^2 - 4}{x^2 - x - 6}$$, wh

Medium

Rational Function Asymptotes and Holes

Consider the rational function $$r(x)=\frac{x^2 - 4}{x^2 - x - 6}$$. Analyze the function according

Medium

Real-World Modeling: Population Estimation

A biologist models the population of a species over time $$t$$ (in years) with the polynomial functi

Medium

Regression Model Selection for Experimental Data

Experimental data was collected, and the following table represents the relationship between a contr

Extreme

Return to a Rational Expression under Transformation

Consider the function $$f(x)=\frac{(x-2)(x+3)}{(x-2)(x-5)}$$, defined for $$x\neq2,5$$. Answer the f

Hard

Revenue Function Transformations

A company models its revenue with a polynomial function $$f(x)$$. It is known that $$f(x)$$ has x-in

Medium

Revenue Modeling with a Polynomial Function

A small theater's revenue from ticket sales is modeled by the polynomial function $$R(x)= -0.5*x^3 +

Medium

Roller Coaster Curve Analysis

A roller coaster's vertical profile is modeled by the polynomial function $$f(x)= -0.05*x^3 + 1.2*x^

Medium

Signal Strength Transformation Analysis

A satellite's signal strength is modeled by the function $$S(x) = 20*\sin(x)$$. A transformation is

Easy

Solving a Logarithmic Equation with Polynomial Bases

Consider the equation $$\log_2(p(x)) = x + 1$$ where $$p(x)= x^2+2*x+1$$.

Easy

Solving Polynomial Inequalities

Consider the polynomial $$p(x)= x^3 - 5*x^2 + 6*x$$. Answer the following parts.

Medium

Temperature Rate of Change Analysis

In a manufacturing process, the temperature in a reactor is recorded over time. Using the table prov

Medium

Transformation of a Parabola

Starting with the parent function $$f(x)=x^2$$, a new function is defined by $$g(x) = -2*(x+3)^2 + 4

Easy

Trigonometric Function Analysis and Identity Verification

Consider the trigonometric function $$g(x)= 2*\tan(3*x-\frac{\pi}{4})$$, where $$x$$ is measured in

Medium

Zero Finding and Sign Charts

Consider the function $$p(x)= (x-2)(x+1)(x-5)$$.

Easy

Zeros and Factorization Analysis

A fourth-degree polynomial $$Q(x)$$ is known to have zeros at $$x=-3$$ (with multiplicity 2), $$x=1$

Medium
Unit 2: Exponential and Logarithmic Functions

Acoustics and the Logarithmic Scale

The sound intensity level (in decibels) of a sound is given by the function $$f(x)=10*\log_{10}(x)$$

Medium

Analyzing Social Media Popularity with Logarithmic Growth

A social media analyst is studying the early-stage growth of a new account's followers. Initially, t

Extreme

Arithmetic Sequence Analysis

Consider an arithmetic sequence with initial term $$a_0$$ and common difference $$d$$. Analyze the c

Easy

Bacterial Growth Modeling

A biologist is studying a rapidly growing bacterial culture. The number of bacteria at time $$t$$ (i

Medium

Cellular Data Usage Trend

A telecommunications company records monthly cellular data usage (in MB) that appears to grow expone

Medium

Comparing Arithmetic and Exponential Models in Population Growth

Two neighboring communities display different population growth patterns. Community A increases by a

Hard

Comparing Exponential and Linear Growth in Business

A company is analyzing its revenue over several quarters. They suspect that part of the growth is li

Medium

Comparing Linear and Exponential Growth Models

A company is analyzing its profit growth using two distinct models: an arithmetic model given by $$P

Medium

Competing Exponential Cooling Models

Two models are proposed for the cooling of an object. Model A is $$T_A(t) = T_env + 30·e^(-0.5*t)$$

Hard

Composite Functions and Their Inverses

For the functions $$f(x) = 2^x$$ and $$g(x) = \log_2(x)$$, analyze their composite functions.

Easy

Composite Functions with Exponential and Logarithmic Elements

Given the functions $$f(x)= \ln(x)$$ and $$g(x)= e^x$$, analyze their compositions.

Easy

Composite Functions: Shifting and Scaling in Log and Exp

Consider the functions $$f(x)=2*e^(x-3)$$ and $$g(x)=\ln(x)+4$$.

Medium

Composition of Exponential and Logarithmic Functions

Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.

Easy

Composition of Exponential and Logarithmic Functions

Consider the functions $$f(x)= \log_5\left(\frac{x}{2}\right)$$ and $$g(x)= 10\cdot 5^x$$. Answer th

Medium

Compound Interest vs. Simple Interest

A financial analyst is comparing two interest methods on an initial deposit of $$10000$$ dollars. On

Medium

Connecting Exponential Functions with Geometric Sequences

An exponential function $$f(x) = 5 \cdot 3^x$$ can also be interpreted as a geometric sequence where

Medium

Earthquake Magnitude and Energy Release

Earthquake energy is modeled by the equation $$E = k\cdot 10^{1.5M}$$, where $$E$$ is the energy rel

Medium

Earthquake Magnitude and Logarithms

The Richter scale is logarithmic and is used to measure earthquake intensity. The energy released, \

Hard

Experimental Data Modeling Using Semi-Log Plots

A set of experimental data regarding chemical concentration is given in the table below. The concent

Medium

Exploring the Properties of Exponential Functions

Analyze the exponential function $$f(x)= 4 * 2^x$$.

Easy

Exponential Decay and Half-Life

A radioactive substance decays according to an exponential decay function. The substance initially w

Medium

Exponential Decay: Modeling Half-Life

A radioactive substance decays with a half-life of 5 years. At \(t = 10\) years, the mass of the sub

Hard

Exponential Equations via Logarithms

Solve the exponential equation $$3 * 2^(2*x) = 6^(x+1)$$.

Hard

Exponential Function Transformation

An exponential function is given by $$f(x) = 2 \cdot 3^x$$. Analyze the effects of various transform

Medium

Exponential Function with Compound Transformations and Its Inverse

Consider the function $$f(x)=2^(x-2)+3$$. Determine its invertibility, find its inverse function, an

Easy

Exponential Growth from Percentage Increase

A process increases by 8% per unit time. Write an exponential function that models this growth.

Easy

Exponential Inequalities

Solve the inequality $$3 \cdot 2^x \le 48$$.

Easy

Fractal Pattern Growth

A fractal pattern is generated such that after its initial creation, each iteration adds an area tha

Medium

Geometric Sequence Construction

Consider a geometric sequence where the first term is $$g_0 = 3$$ and the second term is $$g_1 = 6$$

Easy

Geometric Sequence in Compound Interest

An investment grows according to a geometric sequence. The initial investment is $$1000$$ dollars an

Easy

Inverse and Domain of a Logarithmic Transformation

Given the function $$f(x) = \log_3(x - 2) + 4$$, answer the following parts.

Medium

Inverse Functions of Exponential and Logarithmic Forms

Consider the exponential function $$f(x) = 2 \cdot 3^x$$. Answer the following parts.

Medium

Investment Growth: Compound Interest

An investor deposits an initial amount \(P\) dollars in a savings account that compounds interest an

Medium

Log-Exponential Function and Its Inverse

For the function $$f(x)=\log_2(3^(x)-5)$$, determine the domain, prove it is one-to-one, find its in

Extreme

Log-Exponential Hybrid Function and Its Inverse

Consider the function $$f(x)=\log_3(8*3^(x)-5)$$. Analyze its domain, prove its one-to-one property,

Extreme

Logarithmic Analysis of Earthquake Intensity

The magnitude of an earthquake on the Richter scale is determined using a logarithmic function. Cons

Medium

Logarithmic Cost Function in Production

A company’s cost function is given by $$C(x)= 50+ 10\log_{2}(x)$$, where $$x>0$$ represents the numb

Medium

Logarithmic Equation and Extraneous Solutions

Solve the logarithmic equation $$log₂(x - 1) + log₂(3*x + 2) = 3$$.

Hard

Logarithmic Function Analysis

Consider the logarithmic function $$f(x) = 3 + 2·log₅(x - 1)$$.

Medium

Logarithmic Function and Inversion

Given the function $$f(x)= \log_3(x-2)+4$$, perform an analysis to determine its domain, prove it is

Medium

Logarithmic Function and Properties

Consider the logarithmic function $$g(x) = \log_3(x)$$ and analyze its properties.

Medium

Logarithmic Inequalities

Solve the inequality $$\log_{2}(x-1) > 3$$.

Easy

pH Measurement and Inversion

A researcher uses the function $$f(x)=-\log_{10}(x)+7$$ to measure the pH of a solution, where $$x$$

Easy

Piecewise Exponential and Logarithmic Function Discontinuities

Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,

Hard

Population Demographics Model

A small town’s population (measured in hundreds) is recorded over several time intervals. The data i

Medium

Population Growth Inversion

A town's population grows according to the function $$f(t)=1200*(1.05)^(t)$$, where $$t$$ is the tim

Medium

Radioactive Decay and Exponential Functions

A sample of a radioactive substance is monitored over time. The decay in mass is recorded in the tab

Medium

Radioactive Decay and Logarithmic Inversion

A radioactive substance decays such that its mass halves every 8 years. At time \(t=0\), the substan

Medium

Radioactive Decay Model

A radioactive substance decays according to the function $$f(t)= a \cdot e^{-kt}$$. In an experiment

Hard

Radioactive Decay Modeling

A radioactive substance decays according to the model N(t) = N₀ · e^(-k*t), where t is measured in y

Medium

Real Estate Price Appreciation

A real estate property appreciates according to an exponential model and receives an additional fixe

Hard

Savings Account Growth: Arithmetic vs Geometric Sequences

An individual opens a savings account that incorporates both regular deposits and interest earnings.

Hard

Semi-Log Plot Data Analysis

A set of experimental data representing bacterial concentration (in CFU/mL) over time (in days) is g

Medium

Shifted Exponential Function and Its Inverse

Consider the function $$f(x)=7-4*2^(x-3)$$. Determine its one-to-one nature, find its inverse functi

Hard

Solving Exponential Equations Using Logarithms

Solve for $$x$$ in the exponential equation $$2*3^(x)=54$$.

Easy

Solving Exponential Equations Using Logarithms

Solve the exponential equation $$5\cdot2^{(x-2)}=40$$. (a) Isolate the exponential term and solve f

Easy

Solving Logarithmic Equations and Checking Domain

An engineer is analyzing a system and obtains the following logarithmic equation: $$\log_3(x+2) + \

Hard

Telephone Call Data Analysis on Semi-Log Plot

A telecommunications company records the number of calls received each hour. The data suggest an exp

Medium

Temperature Decay Modeled by a Logarithmic Function

In an experiment, the temperature (in degrees Celsius) of an object decreases over time according to

Medium

Transformation of Exponential Functions

Consider the exponential function $$f(x)= 3 * 5^x$$. A new function $$g(x)$$ is defined by applying

Medium

Traveling Sales Discount Sequence

A traveling salesman offers discounts on his products following a geometric sequence. The initial pr

Easy
Unit 3: Trigonometric and Polar Functions

Analysis of Reciprocal Trigonometric Functions

Examine the properties of the reciprocal trigonometric functions $$\csc(θ)$$, $$\sec(θ)$$, and $$\co

Hard

Analyzing a Limacon

Consider the polar function $$r=3+2\cos(\theta)$$.

Hard

Analyzing the Tangent Function

Consider the tangent function $$T(x)=\tan(x)$$.

Easy

Applying Sine and Cosine Sum Identities in Modeling

A researcher uses trigonometric sum identities to simplify complex periodic data. Consider the ident

Medium

Average Rate of Change in a Polar Function

Consider the polar function $$r=f(θ)=3+2*\sin(θ)$$, which models a periodic phenomenon in polar coor

Medium

Combining Logarithmic and Trigonometric Equations

Consider a model where the amplitude of a cosine function is modulated by an exponential decay. The

Hard

Comparing Sinusoidal Function Models

Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r

Medium

Converting Complex Numbers to Polar Form

Convert the complex number $$3-3*\text{i}$$ to polar form and use this representation to compute the

Medium

Coordinate Conversion

Convert the point $$(-\sqrt{3}, 1)$$ from rectangular coordinates to polar coordinates, and then con

Medium

Daily Temperature Fluctuations

The table below shows the recorded temperature (in $$^{\circ}\text{F}$$) at various times during the

Easy

Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences

A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa

Hard

Daylight Hours Modeling

A city's daylight hours vary sinusoidally throughout the year. It is observed that the maximum dayli

Medium

Determining Phase Shifts and Amplitude Changes

A wave function is modeled by $$W(\theta)=7*\cos(4*(\theta-c))+d$$, where c and d are unknown consta

Hard

Equivalent Representations Using Pythagorean Identity

Using trigonometric identities, answer the following:

Medium

Exploring Limacons in Polar Coordinates

Consider the polar function $$r=2+3*\cos(θ)$$ which represents a limacon. Evaluate its key features

Hard

Extracting Sinusoidal Parameters from Data

The function $$f(x)=a\sin[b(x-c)]+d$$ models periodic data, with the following values provided: | x

Easy

Graph Transformations of Sinusoidal Functions

Consider the sinusoidal function $$f(x) = 3*\sin\Bigl(2*(x - \frac{\pi}{4})\Bigr) - 1$$.

Medium

Graphing Sine and Cosine Functions from the Unit Circle

Using information from special right triangles, answer the following:

Easy

Graphing the Tangent Function with Asymptotes

Consider the transformed tangent function $$g(\theta)=\tan(\theta-\frac{\pi}{4})$$.

Hard

Interpreting Trigonometric Data Models

A set of experimental data capturing a periodic phenomenon is given in the table below. Use these da

Medium

Inverse Function Analysis

Given the function $$f(\theta)=2*\sin(\theta)+1$$, analyze its invertibility and determine its inver

Easy

Inverse Trigonometric Analysis

Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x)=\sin(x)$$ defined on the interval $$\left[-\frac{\pi}{2},\frac{\pi}{2}\

Easy

Limacon Analysis

Investigate the polar function $$r = 3 + 2*\cos(\theta)$$.

Medium

Limacons and Cardioids

Consider the polar function $$r=1+2*\cos(\theta)$$.

Hard

Modeling a Ferris Wheel's Motion Using Sinusoidal Functions

A Ferris wheel with a diameter of 10 meters rotates at a constant speed. The lowest point of the rid

Easy

Modeling Daylight Hours with a Sinusoidal Function

A study in a northern city recorded the number of daylight hours over the course of one year. The ob

Medium

Modeling Daylight Variation

A coastal city records its daylight hours over the year. A sinusoidal model of the form $$D(t)=A*\si

Medium

Modeling Tidal Motion with a Sinusoidal Function

A coastal town uses the model $$h(t)=4*\sin\left(\frac{\pi}{6}*(t-2)\right)+10$$ (with $$t$$ in hour

Medium

Modeling Tides with Sinusoidal Functions

Tidal heights at a coastal location are modeled by the function $$H(t)=2\,\sin\Bigl(\frac{\pi}{6}(t-

Easy

Pendulum Motion and Periodic Phenomena

A pendulum's angular displacement from the vertical is observed to follow a periodic pattern. Refer

Medium

Periodic Phenomena: Seasonal Daylight Variation

A scientist is studying the variation in daylight hours over the course of a year in a northern regi

Medium

Phase Shift Analysis in Sinusoidal Functions

A sinusoidal function describing a physical process is given by $$f(\theta)=5*\sin(\theta-\phi)+2$$.

Medium

Piecewise Trigonometric Function and Continuity Analysis

Consider the piecewise defined function $$f(\theta)=\begin{cases}\frac{\sin(\theta)}{\theta} & ,\ \t

Medium

Polar Coordinates Conversion

Convert the rectangular coordinate point $$(-3,\,3\sqrt{3})$$ into polar form.

Medium

Polar Coordinates Conversion

Convert between Cartesian and polar coordinates and analyze related polar equations.

Medium

Polar Coordinates: Converting and Graphing

Given the rectangular coordinate point $$(3, -3\sqrt{3})$$, convert and analyze its polar representa

Medium

Polar Interpretation of Periodic Phenomena

A meteorologist models wind speed variations with direction over time using a polar function of the

Hard

Polar Rose Analysis

Analyze the polar equation $$r = 2*\cos(3\theta)$$.

Medium

Polar to Cartesian Conversion for a Circle

Consider the polar equation $$r=6\cos(\theta)$$.

Medium

Probability and Trigonometry: Dartboard Game

A circular dartboard is divided into three regions by drawing two radii, forming sectors. One region

Extreme

Rate of Change in Polar Functions

Consider the polar function $$r(\theta)=3+\sin(\theta)$$.

Hard

Reciprocal and Pythagorean Identities

Verify the identity $$1+\cot^2(x)=\csc^2(x)$$ and use it to solve the related trigonometric equation

Easy

Roulette Wheel Outcomes and Angle Analysis

A casino roulette wheel is divided into 12 equal sectors. Answer the following:

Hard

Seasonal Demand Modeling

A company's product demand follows a seasonal pattern modeled by $$D(t)=500+50\cos\left(\frac{2\pi}{

Medium

Secant Function and Its Transformations

Investigate the function $$f(\theta)=\sec(\theta)$$ and the transformation $$h(\theta)=2*\sec(\theta

Medium

Sinusoidal Data Analysis

An experimental setup records data that follows a sinusoidal pattern. The table below gives the disp

Medium

Sinusoidal Function Transformation Analysis

Analyze the sinusoidal function given by $$g(\theta)=3*\sin\left(2*(\theta-\frac{\pi}{4})\right)-1$$

Medium

Solving a Basic Trigonometric Equation

Solve the trigonometric equation $$2\cos(x)-1=0$$ for $$0 \le x < 2\pi$$.

Easy

Solving a Trigonometric Equation

Solve the trigonometric equation $$2*\cos(\theta) - 1 = 0$$ for $$\theta$$ in the interval $$[0, 2\p

Medium

Solving a Trigonometric Equation

Solve the trigonometric equation $$2*\sin(\theta)+\sqrt{3}=0$$ for all solutions in the interval $$[

Easy

Solving a Trigonometric Inequality

Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.

Hard

Solving Trigonometric Equations in a Specified Interval

Solve the given trigonometric equations within specified intervals and explain the underlying reason

Easy

Solving Trigonometric Equations in a Survey

In a survey, participants' responses are modeled using trigonometric equations. Solve the following

Easy

Solving Trigonometric Inequalities

Solve the inequality $$\sin(\theta)>\frac{1}{2}$$ for \(\theta\) in the interval [0, 2\pi].

Medium

Tangent Function and Asymptotes

Examine the function $$f(\theta)=\tan(\theta)$$ defined on the interval $$\left(-\frac{\pi}{2}, \fra

Medium

Tide Height Model: Using Sine Functions

A coastal region experiences tides that follow a sinusoidal pattern. A table of tide heights (in fee

Medium

Transformations of Inverse Trigonometric Functions

Analyze the inverse trigonometric function $$g(x)=\arccos(x)$$ and its transformation into $$h(x)=2-

Medium

Transformations of Sinusoidal Functions

Consider the function $$y = 3*\sin(2*(x - \pi/4)) - 1$$. Answer the following:

Medium

Trigonometric Identities and Sum Formulas

Trigonometric identities are important for simplifying expressions that arise in wave interference a

Easy

Trigonometric Inequality Solution

Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.

Easy

Unit Circle and Special Triangle Values

Using the unit circle and properties of special triangles, answer the following.

Easy

Verification and Application of Trigonometric Identities

Consider the sine addition identity $$\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\b

Easy
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Analysis of a Particle's Parametric Path

A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$

Medium

Analysis of Vector Directions and Transformations

Given the vectors $$\mathbf{a}=\langle -1,2\rangle$$ and $$\mathbf{b}=\langle 4,3\rangle$$, perform

Hard

Analyzing a Piecewise Function Involving Absolute Value and Removability

Consider the function $$F(x)=\begin{cases} \frac{|x-2|(x+1) - (x-2)(x+1)}{x-2} & \text{if } x \neq 2

Hard

Analyzing the Composition of Two Matrix Transformations

Let matrices be given by $$A=\begin{pmatrix}1 & 2\\0 & 1\end{pmatrix}$$ and $$B=\begin{pmatrix}2 & 0

Medium

Average Rate of Change in Parametric Motion

A projectile is launched and its motion is modeled by $$x(t)=3*t+1$$ and $$y(t)=16-4*t^2$$, where $$

Medium

Determinant Applications in Area Computation

Vectors $$\mathbf{u}=\langle 5,2\rangle$$ and $$\mathbf{v}=\langle 1,4\rangle$$ form adjacent sides

Easy

Discontinuity Analysis in an Implicitly Defined Function

Consider the circle defined by $$x^2+y^2=4$$. A piecewise function for $$y$$ is attempted as $$y(x)=

Medium

Displacement and Average Velocity from a Vector-Valued Function

A particle’s position is given by the vector-valued function $$p(t)=\langle 2*t, t^2 - 4*t + 3 \ran

Medium

FRQ 1: Parametric Path and Motion Analysis

Consider the parametric function $$f(t)=(x(t),y(t))$$ defined by $$x(t)=t^2-4*t+3$$ and $$y(t)=2*t-1

Medium

FRQ 4: Parametric Representation of a Parabola

The parabola given by $$y=(x-1)^2-2$$ can be represented parametrically as $$ (x(t), y(t)) = (t, (t-

Medium

FRQ 5: Parametrically Defined Ellipse

An ellipse is described parametrically by $$x(t)=3*\cos(t)$$ and $$y(t)=2*\sin(t)$$ for $$t\in[0,2\p

Hard

FRQ 8: Vector Analysis - Dot Product and Angle

Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th

Medium

FRQ 9: Vectors in Motion and Velocity

A particle's position is described by the vector-valued function $$p(t)=\langle2*t-1, t^2+1\rangle$$

Medium

FRQ 10: Unit Vectors and Direction

Consider the vector $$\textbf{w}=\langle -5, 12 \rangle$$.

Easy

FRQ 11: Matrix Inversion and Determinants

Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.

Medium

FRQ 18: Dynamic Systems and Transition Matrices

Consider a transition matrix modeling state changes given by $$M=\begin{bmatrix}0.7 & 0.3\\0.4 & 0.6

Hard

FRQ 19: Parametric Functions and Matrix Transformation

A particle's motion is given by the parametric equations $$f(t)=(t, t^2)$$ for $$t\in[0,2]$$. A line

Hard

Implicit Function Analysis

Consider the implicitly defined equation $$x^2 + y^2 - 4*x + 6*y - 12 = 0$$. Answer the following:

Easy

Inverse and Determinant of a Matrix

Consider the matrix $$A=\begin{pmatrix}4 & 3 \\ 2 & 1\end{pmatrix}$$.

Easy

Linear Parametric Motion Modeling

A car travels along a straight path, and its position in the plane is given by the parametric equati

Easy

Linear Transformation and Area Scaling

Consider the linear transformation L on \(\mathbb{R}^2\) defined by the matrix $$A= \begin{pmatrix}

Medium

Linear Transformation and its Effect on Geometric Shapes

A linear transformation in \(\mathbb{R}^2\) is represented by the matrix $$M=\begin{pmatrix} 2 & 0 \

Easy

Linear Transformations in the Plane

A linear transformation $$L$$ from $$\mathbb{R}^2$$ to $$\mathbb{R}^2$$ is defined by $$L(x,y)=(2x-y

Hard

Matrices as Models for Population Dynamics

A population of two species is modeled by the transition matrix $$P=\begin{pmatrix} 0.8 & 0.1 \\ 0.2

Hard

Matrices as Representations of Rotation

Consider the matrix $$A=\begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}$$, which represents a rotation in

Easy

Matrix Applications in State Transitions

In a system representing transitions between two states, the following transition matrix is used: $

Hard

Matrix Modeling of Department Transitions

A company’s employee transitions between two departments are modeled by the matrix $$M=\begin{pmatri

Extreme

Matrix Modeling of State Transitions

In a two-state system, the transition matrix is given by $$T=\begin{pmatrix}0.8 & 0.2 \\ 0.3 & 0.7\e

Extreme

Matrix Multiplication Exploration

Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B = \begin{pmatrix} 0 & -1 \\ 5 & 2 \

Medium

Matrix Representation of Linear Transformations

Consider the linear transformation defined by $$L(x,y)=(3*x-2*y, 4*x+y)$$.

Medium

Matrix Transformation in Graphics

In computer graphics, images are often transformed using matrices. Consider the transformation matri

Hard

Matrix Transformation of a Vector

Let the transformation matrix be $$A=\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix},$$ and let the

Medium

Modeling Discontinuities in a Function Representing Planar Motion

A car's horizontal motion is modeled by the function $$x(t)=\begin{cases} \frac{t^2-1}{t-1} & \text{

Medium

Modeling Linear Motion Using Parametric Equations

A car travels along a straight road. Its position in the plane is given by the parametric equations

Easy

Modeling Particle Trajectory with Parametric Equations

A particle’s motion is described by the parametric equations $$x(t)=3*t+1$$ and $$y(t)=-2*t^2+8*t-1$

Medium

Modeling State Transitions with a Transition Matrix (Probability-Based Scenario)

A small business models its customer behavior between two states: Regular and Occasional. The transi

Hard

Modified Circular Motion: Transformation Effects

Consider the parametric equations $$x(t)=2+4\cos(t)$$ and $$y(t)=-3+4\sin(t)$$ which describe a curv

Medium

Parabolic and Elliptical Parametric Representations

A parabola is given by the equation $$y=x^2-4*x+3$$.

Medium

Parameter Transition in a Piecewise-Defined Function

Consider the function $$g(t)=\begin{cases} \frac{t^3-1}{t-1} & \text{if } t \neq 1, \\ 5 & \text{if

Easy

Parametric Equations of an Ellipse

Consider the ellipse defined by $$\frac{x^2}{9} + \frac{y^2}{4} = 1$$. Answer the following:

Easy

Parametric Motion with Variable Rates

A particle moves in the plane with its motion described by $$x(t)=4*t-t^2$$ and $$y(t)=t^2-2*t$$.

Hard

Parametric Representation of a Hyperbola

For the hyperbola given by $$\frac{x^2}{9}-\frac{y^2}{4}=1$$:

Hard

Parametric Representation of a Parabola

A parabola is given by the equation $$y=x^2-2*x+1$$. A parametric representation for this parabola i

Easy

Parametric Representation of an Implicitly Defined Function

Consider the implicitly defined curve $$x^2+y^2=16$$. A common parametric representation is given by

Easy

Parametrically Defined Circular Motion

A particle moves along a circle of radius 2 with parametric equations $$x(t)=2*cos(t)$$ and $$y(t)=2

Easy

Parametrization of a Parabola

Given the explicit function $$y = 2*x^2 + 3*x - 1$$, answer the following:

Medium

Parametrization of an Ellipse for a Racetrack

A racetrack is shaped like the ellipse given by $$\frac{(x-1)^2}{16}+\frac{(y+2)^2}{9}=1$$.

Medium

Parametrizing a Linear Path: Car Motion

A car moves along a straight line from point $$A=(1,2)$$ to point $$B=(7,8)$$.

Easy

Particle Motion Through Position and Velocity Vectors

A particle’s position is given by the vector function $$\vec{p}(t)= \langle 3*t^2 - 2*t,\, t^3 \rang

Medium

Piecewise Function and Discontinuities

Consider the function $$f(x)=\begin{cases} \frac{x^2 - 1}{x-1} & \text{if } x \neq 1, \\ 3 & \text{i

Easy

Reflection Transformation Using Matrices

A reflection over the line \(y=x\) in the plane can be represented by the matrix $$R=\begin{pmatrix}

Easy

Resolving Discontinuities in an Elliptical Parameterization

An ellipse is parameterized by the following equations: $$x(\theta)=\begin{cases} 5\cos(\theta) & \t

Easy

Rotation of a Force Vector

A force vector is given by \(\vec{F}= \langle 10, 5 \rangle\). This force is rotated by 30° counterc

Easy

Table-Driven Analysis of a Piecewise Defined Function

A researcher defines a function $$h(x)=\begin{cases} \frac{x^2 - 4}{x-2} & \text{if } x < 2, \\ x+3

Medium

Uniform Circular Motion

A car is moving along a circular track of radius 10 meters. Its motion is described by the parametri

Easy

Vector Addition and Scalar Multiplication

Consider the vectors $$\vec{u}=\langle 1, 3 \rangle$$ and $$\vec{v}=\langle -2, 4 \rangle$$:

Medium

Vector Analysis in Projectile Motion

A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i

Easy

Vector Operations

Given the vectors $$u=\langle 3, -2 \rangle$$ and $$v=\langle -1, 4 \rangle$$, (a) Compute the magn

Easy

Vector Operations in the Plane

Let $$\vec{u}= \langle 3, -2 \rangle$$ and $$\vec{v}= \langle -1, 4 \rangle$$. Perform the following

Easy

Vector Operations in the Plane

Let $$\mathbf{u}=\langle3, -2\rangle$$ and $$\mathbf{v}=\langle -1, 4\rangle$$.

Medium

Vectors in Polar and Cartesian Coordinates

A drone's position is described in polar coordinates by $$r(t)=5+t$$ and $$\theta(t)=\frac{\pi}{6}t$

Medium

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Browse top AP materials

We’ve found the best flashcards & notes on Knowt.

Tips from Former AP Students

FAQWe thought you might have some questions...
Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.